最終透過操縱銀核和二氧化矽殼構成的無機微結構上的應力,順利的產生了斐波那契螺旋圖案。
數學和物理越深入研究,就越會感嘆生命的奇妙。
對了。
既然說到了曹則賢教授,這裡就順帶簡單闢個謠。
這位曹則賢教授也是個爭議性很大的名嘴,他是科技部973奈米材料專案的首席科學家,百人計劃級別的大佬。
不過嘴中經常會冒出一些比較離譜的觀點,其中有真也有假。
例如他曾經在國科大的講座上說過這麼一句話:
“有85%的數學和物理知識沒有傳入華夏,這些知識都被外國人緊緊捂著。”
這句話其實是有些唬人的,有點刻意為人設而口出狂言的味道。
誰都知道國外必然有一些知識沒有與咱們共享,但那些內容主要涵蓋於前端領域,並且決然沒有85%這麼離譜。
於是呢。
當時被和他一起說出口、用於佐證以上觀點的另一句話,在網上便也成了笑談:
“你們不知道吧,三角形有44072個心。”
但實際上這句話是正確的,並且是一個非常正式的數學研究方向。
只不過它是隸屬於初等平面幾何的結論,平幾早就不再是前端數學的研究方向了,對於大多數人來說基本上用不到。
所以這個知識不是沒傳入國內,而是教了也沒啥意義——哪怕是國外頂尖大學的頂尖競賽班,也不會對這些三角心進行研究。
一般來說。
普通人只需要掌握五心,學幾何的頂多頂多掌握50種就到頂了。
再往後差不多屬於純理論的範疇,極其冷門且偏僻。
因此曹教授拿這個例子去佐證“有85%的數學和物理知識沒有傳入華夏”的做法並不正確,不過本身這個數字沒啥問題。
不是反智,更不是民科,因為三角心的判定是三線共點,由此鎖定的心實在是太多太多了。
目前有個網站將這些心都收錄在了一起,網址為du/cyclopedia/ETCPart4。(這位畢竟是蝸殼的教授,口嗨的內容躺平任嘲,不過這個資料倒確實是無誤的)
OK,話題再回歸原處。
斐波那契數列在生活和數學上的應用極廣,而其中的完全平方項有哪些,也一直是個很有矛盾色彩的問題。
所謂完全平方數。
指的是一個數能表示成某個整數的平方的形式。
比如說4=2^2,9=3^3,256=4^4等等......
為啥說斐波那契數列中的完全平方項是個很矛盾的問題呢?
原因很簡單。