“.......”
長椅上。
看著一臉虛心求教表情的艾維琳,徐雲的表情不由有些微妙。
眾所周知。
人有三大幻覺:
有人找我、
我能反殺、
他/她喜歡我。
作為一名很有逼數的後世來人。
徐雲雖然沒有自戀到妹子會和自己表白的地步,但在聽到這姑娘有問題要問自己的時候,多少還是下意識的以為對方會冒出些和自己來路有關的話。
結果沒想到.......
艾維琳所說的問題,還真是一個問題?
斐波那契數列。
這是一個非常非常有名的數學謎團,在數學和生活以及自然界中都極其有用。
斐波那契數列最早可以追溯到公元7世紀,當時印度有個數學家叫做Gopala。
此人在研究箱子包裝物件長度恰好為1和2時的方法數時首先描述了這個數列,也就是下面這個問題:
有n個臺階,你每次只能跨一階或兩階,上樓有幾種方法?
接著這個問題再一次變化,進階成了更有名的兔子謎團:
假設兔子在出生兩個月後就有繁殖能力,一對兔子每個月能生出一對小兔子。
如果所有兔子都不死,那麼一年以後可以繁殖多少對兔子?
這個問題最終由斐波那契歸納成了一個數列,也就是:
0,1,1,2,3,5,8,13,21,34,55,89,144,233,377…這樣一個無限數列。
它的特點是後一個數字是前兩個數字之和,0+1=1,1+1=2,1+2=3往後類推.......
而且用前一個數字來除以後一個數字,就無限接近於黃金分割數0.618。
這個數列用公式表達的話則是Xn=X(n1+X(n2,其中X0=0,X1=1。
《達芬奇密碼》中。
盧浮宮館長被人殺害陳屍在地板上,當時館長脫光了衣服,擺成達·芬奇名畫維特魯威人並且留下了一些奇怪的密碼。
而這些讓人難以琢磨的密碼,正是斐波那契數列。
自然界中的蜜蜂家譜、松果葉序甚至瓜果外形都和斐波那契數列有關——2005年曹則賢教授與中國科學院物理研究所合作,利用銀核和氧化矽殼研究直徑約10微米的微結構中的應力。