視線再回歸現實。
當然了。
此時楊振寧感慨的並不是自己居然沒想到這麼簡單的邏輯原理,而是在感慨自己得出的結果:
黑洞的視介面積確實會隨質量的增加而增加,並且不會可逆的減小。
而這裡的視介面積便可以等同於黑洞熵。
這裡的等同可不是字面上隨便說的,因為只要把黑洞的表面積A除以普朗克常數h平方再乘以一個無量綱數,就能得到黑洞的熵。
隨後楊振寧在面前的這個公式上看了一會兒,又對徐雲說道:
“小徐,按照你的這個思路我還有兩個問題想確定一下。”
徐雲連忙坐直了身子,說道:
“您說,我一定盡力解答。”
楊振寧頓了頓,問道:
“第一個問題,雖然時間有限,我沒有具體進行過計算,但是根據質能等價定理判斷”
“如果黑洞真的有熵,那麼黑洞內應該也會存在資訊?——至少是有限的資訊?”
徐雲點了點頭,肯定道:
“沒錯。”
楊振寧所說的情況便是前頭提到的貝肯斯坦極限,一個在2023年為數不多被與黑洞面積公式一同被證明的理論。
“.”
楊振寧對於徐雲肯定的答覆並不感覺有多意外,他丟擲這個問題的目的,其實是為了引出後一個猜想:
“也就是說.黑洞,其實也遵循熱力學第二定律?”
徐雲深吸一口氣,胸口略微起伏了一陣:
“.沒錯。”
眾所周知。
在原本歷史中。
黑洞物理學的發展,很大部分都和惠勒這個人有關。
約翰·惠勒作為愛因斯坦的門徒,和自己的老師一樣,也認自然定律關鍵在於引力。
不過惠勒也曾和量子物理的大師波爾在一起工作交流過過,所以同樣也是量子力學的信徒。
他有點類似古代一個叫做葉天士的人物,拜過很多師傅,最終集諸家之長自己也成為了一個大佬。
1967年的時候。
惠勒開始對史瓦西在1917年描述的引力坍塌物體非常感興趣,這玩意兒也就是黑洞。
惠勒認為黑洞就是一個標準的終結體,無論是什麼扔進黑洞,系統的無序度就永遠消失了,因為沒有任何物體可以從黑洞逃逸出來。